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Abstract. This paper presents two initialization algorithms together with the study of
the Quadratic optimization problem (QP), in order to reduce the training time of
Support Vector Machines (SVMs). The QP problem is very resource consuming.
because the quadratic form is dense and the memory requirements grow square the
number of data points. The SVM-QP problem can be solved by several optimization
strategies, but for large-scale applications, a general extension consisting in the
decomposition of the QP problem into smaller ones is used. The support vectors found
in the training of SVMs represent a small subgroup of the training patterms. The
algorithms used in this approach are to initialize the SVMs making a fast
approximation of the points standing for support vectors, and finally, making the
training phase only with those data. The combination of these initialization algorithms
and the decomposition approach, coupled with different QP solvers specially arranged
for the SVM-QP problem are compared using some well-known benchmarks.

1. Introduction

Support Vector Machines (SVMs) is a well-known technique for training separating
functions in pattern recognition tasks and for function estimation in regression
problems. In several problems has shown its generalization capabilities. The
mathematical problem and solutions were settled by Vapnik and Chervonenkis in [1].
Training a Support Vector Machine (SVM) consists in solving a Quadratic
Programming (QP) problem. While solving this QP problem, SVMs solves twoproblems that classical Neural Networks have: 1) choose an optimal topology and 2)
adjust the parameters of the network. Since the number of variables in the QP-problem
is equal to the number of training patterns, the optimization problem becomes
challenging. because the quadratic form is dense and the memory requirements grow
square the number of data points. Both algorithms used in this paper, used to train a
SVM, are based on the idea that the support vectors represents a small subgroup of the
training patterns and if we train a SVM only with those data, the same results are
obtained as trained using the entire data base.

2. Support Vector Machines

Support Vector Machines is a well-known technique for solving classification,
regression and density estimation [1] problems. This learning technique provides a
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convergence to a globally optimal so
lution and, for several problems it

 has shown

better generalization capabilities than other learning techniques.

In agreement with the inductive principle of the structural risk minimi
zation, [1].

in the statistical learning theory, a func
tion, which describes correctly a tr

aining set X

and which belongs to a set of f
unctions with a low VC (Vapnik-

Chervonenkis)

dimension, will have a good generali
zation capacity independently of the input space

dimension. Based on this principle, the Support Vector Machines [1] have a systematic

approach to find a linear functi
on, belonging to a set of function

s with a low VC

dimension.

The principal characteristic of SVMs for pattern recognition is to build an optimal

separating hyperplane between two cla
sses. If this is not possible, the second great

property of this method resides in the proje
ction of X space into a Hilbert space F of

highest dimension, through a functio
n (x). One example is the internal 

product

evaluated using kernel functions:

k(x,,x,) = p(x,)T¢(x,), ij = 1,..,./

satisfying Mercer conditions, like the Gaussian kernel:

1

k(x,,x,,σ) = exp
0/27 202

(1)

(2)

Thus, thanks to the freedom of using different types of kernels, the optimal separating

hyperplane corresponds to different non-linear estimators in the original space.

For classification tasks, the main idea can be stated as follows: given a training data set

(X) characterized by patterns x, e R",i = 1,...,n belonging two possible

classes y, ∈ {1,-1}, there exist a solution represented by the following optimization

problem:
Maximize

L,(a)=Σa,-&a,a,y,9,k(x,x,) (3)
a

Under the constraints Σνα =0, 0<a<c (4)

where a are the Lagrange multipliers introduced to transform the original problem

formulation with linear inequality constraints into the above representation, [1]. The

parameter C controls the misclassification level on the training data and therefore the

margin.The k(x,,x,) term represents the so called kernel trick and is used to project

data into a Hilbert space F of higher dimension using simple functions for the

computation of dot products of the input patterns:

k(x,.x,)=ø(x,) plx,) i,j=1.,n. Once one has the solution, the decision
function is defined as:

f(x) = sign a,y,k(x,,x) +b(£a/k(x, x)+ (5)
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SVM-QP solver that minimizes the training time was QP1 which corresponds to the

dual active set algorithm. Although, it was shown that the BCP initialization could

have limitations when training data sets with a high non-linearity degree.
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