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Abstract. This paper presents two initialization algorithms together with the study of
the Quadratic optimization problem (QP), in order 1o reduce the traming time of
Support Vector Machines (SVMs). The QP problem is very resource consuming,
because the quadratic form is dense and the memory requirements grow square the
number of data points. The SVM-QP problem can be solved by several optimization
strategies, but for large-scale applications, a general extension consisting in the
dccomposition of the QP problem into smaller ones is used. The support vectors found
in the training of SVMs represent a small subgroup of the training patterns. The
algorithms uscd in this approach are to initialize the SVMs making a fast
approximation of the points standing for support vectors, and finally, making the
training phase only with those data. The combination of these initialization algorithms
and the decomposition approach, coupled with different QP solvers specially arranged
for the SVM-QP problem are compared using some well-known benchmarks,

1. Introduction

Support Vector Machines (SVMs) is a well-known technique for training separating
functions in pattern recognition tasks and for function estimation in regression
problems. In several problems has shown its generalization capabilities. The
mathematical problem and solutions were settled by Vapnik and Chervonenkis in [1].
Training a Support Vector Machine (SVM) consists in solving a Quadratic
Programming (QP) problem. While solving this QP problem, SVMs solves two
problems that classical Neural Networks have: 1) choose an optimal topology and 2)
adjust the parameters of the network. Since the number of variables in the QP-problem
is equal to the number of training patiemns, the optimization problem becomes
challenging, because the quadratic form is dense and the memory requirements grow
square the number of data points. Both algorithms used in this paper, used to train a
SVM, are based on the idea that the support vectors represents a small subgroup of the
training patterns and if we train a SVM only with those data, the same results are
obtained as trained using the entire data base.

2. Support Vector Machines

Support Vector Machines is a well-known technique for solving classification,
regression and density estimation [1] problems. This learning technique provides a
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convergence to a globally optimal solution anq. for sc\"cral problems it has shown
better generalization capabilities than othcr‘lcammg techniques. i

In agreement with the inductive principle of the sm.lctural risk minimization, (1.
in the statistical learning theory. a function. which describes corrcc(ly a training sc(_X
and which belongs to a set of functions with a low VC (Vapnik-Chervonenkis)
dimension. will have a good generalization capacity mdcpchenlly of the input space
dimension. Based on this principle. the Support Vector Machines '[|] hav‘c a systematic
approach to find a linear function, belonging to a set of functions with a low VC
s isti ition is to build an opti

The principal characteristic of SVMs for pattern 'rccognmon'n i ptimal
separating hyperplane between two classes. .lf this is not p?SSIblC. !] bc second great
property of this method resides in the projection of X space m.to a Hl' ert space F of
highest dimension, through a function @(x) . One example is the internal product

evaluated using kemnel functions:
k(x,x,) = #(x,)T8(x,) i = 1] )

satisfying Mercer conditions, like the Gaussian kernel:

(xl_xj)) (2)

2

|
o)= exp| —
k(x,X,,0) on 20?

m of using different types of kernels, the optimal separating
rs in the original space.
s: given a training data set

Thus. thanks to the freedo i :
corresponds to different non-linear estimato

hyperplane

For classification tasks, the main idea can be stated as follow
(X) characterized by patterns X, € R" i=1,.,n belonging two possible
, there exist a solution represented by the following optimization

classes y, € {],—I}

problem:
Maximize 1‘”(‘1)=Za’ —.]..Za'alylylk(xl_x/) (3)
a i=1 2 1.)%)
(
Under the constraints Zy,a, =0, O<a<c (4)
=1

where &, are the Lagrange multipliers introduced to transform the original problem

formulation with linear inequality constraints into the above representation, [1]. The
parameter C controls the misclassification level on the training data and therefore the

margin. The k(_\’,,,\’ ,) term represents the so called kernel trick and is used to project
data into a Hilbert space F of higher dimension using simple functions for the
computation of dot products of the input patterns:
! o e : o »
A’(.\‘[..\'/): ;/5(.\‘1) ;15(x ) i,j=1,...,n. Once one has the solution. the decision

&)

function is defined as:

/(X) o sign[Za,y,/«'(x,,X) + b

=1
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The solution to the problem formulated in (4) is a vector a,' = 0 for which the

Q, strictly greater than zero are the support vectors.

3. Quadratic programming optimization problem

Let us define the matrix Q as o= y,y}k(x,,xj) i,j =1,...,] and the vectors

a=[a,.a'l. 1201, y=[ .. y]ana o fotalr A

SVM-QP can be written in matrix form as:

Minimize _1 4 T
e ll(u)—Eu Qa-1"a (6)
Under the constraints yla=0.
O<as< (7

The global minimum of & is guaranteed because of the problem's convexity.

3.1. Optimality conditions

The QP problem must satisfy first and second order conditions, but Ec (6-8) make any
first order critical point a global solution, [8]. In order to solve the problem, the
classical Lagrange duality theory is used and then we have: y€Ro (7) and

p= [ﬂ',..., ,8']" and y = [,(',..., 1']" to (7) the primal lagrangian is:

L,.(u,ll,x,r)=%GTQG—lTa+?y’a—BTa+zT(a—C)

(8
where @ has to be minimized. Thus. the stationary conditions are:
y'a=0,a20 and C-a >0 (primal feasibility) 9)
Qu—-1+)-B+x=0,p=0andy>0 (dual feasibility) (10)
Te Tl N (complementary
pa=0 and 1 (@-C)=0 conditions) (I

which are linear functions of @, y, Band ¥ . Thus. one can obtain the solution of the
SVM-QP problem by finding a non negative solution for the/ equations (9) which also
satisfies lhelcquations (9-11). Also, the dual of the QP problem by:



240  Ariel Garcia. Neil Herndndez. Miguel Gonzélez, Rodolfo Ibarra and Jaime Mora

Minimize L,,(l’-l-}')'—’%(' oy +p-0)"Q (-7 +p-x)-1"C (12)
a

Under the constraints B 20, (13)
120, (14)

which has the same KKT conditions and solution.

4. Algorithms for quadratic optimization problems

There are two main types of algorithms for the resolution of QP problems:

- Interior point methods that aim for the complementary conditions by keeping
primal and dual feasibility at the same time. :

- Active set methods, which are divided in primal and dual. Primal methods aim for
dual feasibility by keeping primal feasibility and complementary conditions and
the dual methods work with primal feasibility by keeping dual feasibility and the
complementary conditions. The dual methods have the condition that the Q matrix

must be a positive definite matrix.

5. Large scale SVM-QP implementation

ms to solve the SVM-QP (6)-(7), described in the preceding
| to solve problems of less than 2000 examples. Beyond this
cessing capacities, it is not possible to use any QP
it is difficult to

Optimization algorith
section are operationa
limit, depending on memory and pro
technique without some modifications. For large-scale data bases,
calculate and store the matrix Q of the vector products k XX} because of data
processing limitations. Consequently, one must find more effective methods for this
kind of problems and be able to find the optimal solution in the minimum time with a
moderate request of data-processing resources.

5.1. Decomposition technique

Different authors. [1]. [9]. [10] and [11], introduced the idea to break up the SVM-QP
problem. into smaller sub problems which are easier to deal with. All those strategies
consider two key points:

- Optimality conditions that make possible to check if the algorithm has optimally
solved the problem. for the SVM-QP problem and its optimality conditions.

- Strategy of implementation, that defines the implementation of the objective
function associated with variables violating optimality conditions, if a particular
solution is not the global solution.
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The solution of the SVM-QP (6)(7) is optimal if and only if KKT cond_ilions (9-11)
are satisficd knowing that matrix Q is semi-definite positive. KKT conditions have a

simple form to check them, thus, the SVM-QP problem can be solved when for
anyi=1,.,1I:

a=0 - yg(x)>) (15)
0<a,<C - yg(x)=1 (16)
a=C — yg(x)<] 17)

with g(x,) the argument of the sign decision function (5):

g(x,)=Y a,yk(x,x,)+b (18)
0

In order to incorporate optimality conditions, implementation strategy must take into
account the fact that a significant pant of Lagrange multipliers of Q, arc equal to zero

in the solution. In a similar way to primal active set methods. a solution is to divide the
training set in active set A. also known as working set. and its complement N. Then, it
is possible to rewrite the SVM-QP problem as follows:

Minimize 1fe,7[Qw QuTe,] [1.] e,
g(a,a.)==| " i
a,,ay 2]a, | |Qu Qu)u, 1, ] lay
T
Under the constraints [y"] [a"]=0,
Yy ay

0, a, C,
<{ sl
0, a, Cy
in which we can replace any i€ Aby any J € N, without modifying the cost

function. The main idea is to have only the support vectors in the active set A.
In this manner, the inactive set N is formed by zero-multipliers @, .

Algorithm 1. Decomposition algorithm of the SVM-QP.

1. Election of an active unit initial 4 of size ny.
2. Solvethe QP (6)-(7). defined by active st A.

3. While there exist any s € N violating v, g( x,)>1.
a.  shift the my most emoncous vectors x, to active set A,
b, shiftall vectors x, with @, -0, 1€ A. to inactive set N. and retumn to step 2

The solution of this problem will be the solution of the SVM-QP problem if it verifies
the optimality conditions (15)-(17). in parlicularj/g(x—j) >], je N(al = 0). If
it is not the case. then @ ,» which corresponds to X, . must be different to zero and,

conscquently, it is necessary to shift it to active set A. Certainly, we can make the same
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h @ =0 to N. The algorithm (1) summarizes the

decomposition algorithm of the SVM-QP problem. To introduce better than a random
initial working set, we can usc a Gaussian search and accelerate the leaming process
[12]. An extreme of the decomposition is the sequential minima'l optimization, SMO,
suggested by Plat, [11]. but, it is not useful for our work since it finds a sub optimal

for vectors X,. associated wit

solution.
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Fig. 1. Initialization strategies. (a) BCP initialization (b) Kemnel Perceptron initialization.
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6. Initialization strategies

Solving large scale applications require a decomposition method that brcakS.UP lh.c
original problem into smaller QP sub problems. The main disadvantage with l'hIS
approach is that patterns for each sub problem are selected randomly (causing
substantial difference in the learning rate) for the decomposition method. In order to
obtain a better initialization working set (in order to accelerate the lecarmning process)
algorithms like Kemel-Percepiron and BCP are used. instead of using a random one.
To perform the task we take advantage of the characteristics of these algorithms: find
an optimal scparating hyperplane for a given dataset, easy to implement and minimal
processing and memory requirements. The combination between these algorithms and
the decomposition approach ensures that the initial sub problem is conformed by
candidate support vectors that were extracted before training the SVM, and
conscquentially, the training time is reduced. The general idea is to obtain a hyperplane
well-classifying the original dataset, by means of the proposed algorithms, then, by
simple Euclidean distance between the hyperplane w and the different paiterns x. we
get the closest to w and form the active set A. Due to geometrical characteristics of the
clusters, we can demonstrate that if the length of 4 is greater enough, then support

vectors are included, and thus, we have the best working set 4 to train the SVM (Refer
to Figure 1).

6.1. Barycentric Correction Procedure

BCP is an algorithm based on geometrical characteristics for training a threshold unit
[2]. It is very efficient training linearly separable problems and it was proven that the
algorithm rapidly converges towards a solution [3]. Also, it is a free parameters
algorithm offering very fast solutions for any kind of problems. The algorithm defines

a hyperplane w'x+6=0 dividing the input space for each class. Thus. we can define:
I, = {],...,N,} and J, = {1,...,N°} where N, represents the number of patterns

b .
of target 1 and N, the number of patterns of target—1. Also, let & =(b,.6,) be the
barycenter of points C, and Co, weighted by the positive coefficients

a=(a,. ay) and “=(”"""”~"-)rcfcrrcd as weighting coefficients [3):

a,p, Z H,m,
b, = —_—Z'Z ap . b= —'Z y (19)

i, wl,

The weight vector w is defined as a vector difference w = b, —b,. At cach iteration.
barycenter moves towards misclassified patterns. Increasing the value of particular
barycenter implies hyperplane moves on that direction. For computing the bias term©.
let’s define 9:91" >R such that 8(p)=-w- p. The bias term is calculated as

P00 Min By JoJoc
follows: 2 Assuming the existence of 71 © Trand”/e < 1o
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that refer to misclassified examples of target (+1, -1), barycenter modifications are
calculated by:

V,eJ, a (new ), =alold ) + B, (20)
vV,eJ, plnew ), = p(old ), + 95,
Where # and 4 are defined as follows:

B = max {ﬂ_ . min [ﬂ_ '—:Il—:-]} & = max {o‘_.min [6_,:-:]}

According to [3], B.. and S canbesetto | and P == , %= set 10 30.

6.2. Perceptron algorithm

The Perceptron algorithm [5] is a first approach method to deal with linearly scparable
problems. It is an incremental algorithm that starts with a weight vectorw = 0. At
each iteration, small modifications to w are performed until a solution is reached.
Convergence is ensured in a finite number of iterations for linearly separable problems.
In this research, we make some modifications to the original algorithm to treat non-
lincarly scparable problems.

Algorithm 2. Perccpiron algorithm.

. 1. Innialize the weight vector w, b and choose a leaming step 5
2. While there exist i:i€ N such that f(x,)#y,
. 3. Update w and b values according 10 Aw-= w.,, +(7/2)y, -x,) 2"d Ab=b,, +(n12Xy,)

6.3. Kernel Perceptron extension

The kemel Perceptron algorithm [6] deals with non-linearly scparable datasets.
Basically the algorithm defines the dual function:

3 Vi dual variables to be
( = r.y, ). + p Where 7 is the set of dual variables to
sin=3 ry ek )¢ ()}

updated and the dot product (4(x, )- (x)) is replaced for the kernel function k(x,., x) ’

7. Experimental Results

In this section. we present the comparison tables of the two initialization strategies and
the two adapted QP-SVM implementations: a dual active set algorithm (QP/) and an
interior point algorithm (QP2). Also, a comparison of these methods with a second
interior point method called pr-logo (QP3), [4] is presented. For every initialization
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strategy,  we  coupled a  decomposition algorithm: ~ BCP  +QP, and
KernelPerceptron+QP,. We used seven benchmark problems commonly referred in the
literature: iris (iri), sonar (son), Pima Indian diabetes (pid), Tic Tac Toe (tic),
Phonemes (pho), adult (adu) and Shuttle (shu) data sets [7]. Experiments were done
with a RBF function with ¥ = 0.5 for the kemel parameters and the regularization

parameter C was set to 1000. These parameters were selected by means of cross-
validation. Results shown in Tables 1 and 2 are the standard mean of about 1000
executions. The best results were obtained using the QP! approach and the two
initialization strategies (BCP and Kemel Perceptron). Although the good results
obtained, an important problem is noted: The BCP + OP strategy has a good
performance with these data sets but, if a benchmark with a high degree of non-
linearity is tested, it is not guaranteed that the initjal working set contains a significant
number of support vectors. It is because the approach is approximating the solution by
a linear function (in the original space), while the solution of the SVM is reached in a
high dimensional space (in feature space). The KernPerceptron+QP strategy does not
have this problem, because the Kemnel Perceptron algorithm looks for the solution in
the same high dimensional space that the SVM algorithm.

Table 1. Time performance of BCP initialization and QP solvers

N [BCP + QPI[BCP + QP2IBCP + QP3J

iri 150 10.0123 see 0.391 ~ec 5.201 soc

son| 208 0.16 s G.213 o 16.231 soec
pid| 763 5.143 ~cc 25,450 sec 12,960 soc
tic | 958 3.091 sec 28.156 scc 11.975 sce
phol| 1027 ] 37328 wee 43.150 ~o¢
adu] 5000 1272.028 sec | 318,152 soc

shu13633] 35,131 sec | 92.G92 noo 202,128 sec

Table 2. Time performance of Kemel Perceptron initialization and QP Solvers

N [Rpercept + QP1Rperceptr + QP2 Kperceptr + QP3|
iri | 150 0.0136 sec 0.3673 scc 6.010 see
son| 208 0.1231 sec 5.878 sec 11.231 sec
pid| 768 2.296 sec 22,086 ~ec 38.069 see
tic | U58 1.035 sec 210876 rec 40.352 »sec
pho| 1027 3.250 sce 2 T seC 53.150 sce
adul 5000 13.35 sec 125304 sec 355.278 sec
~hu|13633 19.825 sec 102,192 sec 262.628 sec

8. Conclusions

Support Vector Machines is a promising methodology used in different research areas.
Moreover, the optimization of the SVM is a delicate problem due to computational and
memory requirements. This research is focused in combining different initialization
strategies and three different SVM-QP solvers in order to select one that improves the
training time of SVMs. The comparison of the different proposals shows that using
kernel Perceptron and BCP as initialization strategies has a good performance, but the
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SVM-QP solver that minimizes the training time was OP/ which corresponds to the

dual active set algorithm. Although. it w ¢
have limitations when training data sets with a hi

as shown that the BCP initialization could
gh non-lincarity degree.
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